一般科目
准教授
博士(数学)筑波大学 甲第3285号
図書館参事
音楽部 (an advanced drummer)
yoneda@tokuyama.ac.jp
https://www.researchgate.net/profile/Ikuo-Yoneda
0834-29-6249
醜い浮世の毀誉褒貶よりも生涯現役数学者
単独研究口頭発表(英語) 責任著者論文 研究集会幹事の評価係数が低いので 毎年 自己評価点数順位は堂々の最下位です!
博士論文で2005年の日本数学会年会/数学基礎論および歴史分科会/特別講演に招待されています:https://www.mathsoc.jp/section/logic_and_history/Tokubetu.html
https://www.mathsoc.jp/meeting/nichidai05mar/program05.pdf
私の代表的な研究キーワードは四則演算を排除する CM-triviality です
論文掲載費が必要のマイナーな学術雑誌への投稿や指導教官との共著論文はありません
これまで執筆した論文はすべて責任著者=corresponding authorを務めています
責任著者とはその論文の最大の理解執筆者であり学術論文誌のeditorとやり取りをする唯一の窓口となる著者で
出版先へのcopyright譲渡の署名をし かつ国際会議や招待講演での口頭発表代表者の権利が与えられます
詳しくはこちら ↓
https://scientific-publishing.webshop.elsevier.com/publication-recognition/what-corresponding-author/
高専kosenは技術後進国でしか評価されないlocal name それに甘んじていいのか?
Kosen International Standard is similar to domestically international standard.
学位授与機構に認められるような研究組織・国立工科研究所National institute of technologyのglobal nameにふさわしいよう
論文掲載費補助をやめElsevierだけでなくSpringer, World Scientific, Wileyの論文もonlineで学生含め読めるといい
シラバスと成績評価がない授業を学位授与機構はどのように認定するのだろう
研究者は指導教官・ボスからの早い自立が求められ いつまでもボス頼みは惨たらしいし情けない
論文の構想が出来ないボス頼みのpassive researcherが学生にactive learning促すは滑稽
Faculty Developmentは教育論文でなくacademic paperのcorresponding authorになるところから
アカデミックを諦めた方に対する/方によるFD講習は無意味です
数年にわたり定期試験平均点数が65点以下の科目は再試験より担当教員のFDが早い解決法でしょう ただしアカデミックな教員に限ります
アカデミックでない方は学生の成績不振を自分の非とすら感じず学生の落ち度にするのです 学生の成績不振と教員の論文執筆能力には相関性があります 何故なら論文執筆力は他人への説明能力だからです 授業も同じです
論文を読まずボスとその仲間に論文を書いてもらう共著者ばかりの業績で何が楽しいのだろう
ボスが引退したら共著論文もなくなり学位授与機構により特別適用専攻科研究室から除外/専攻科の定員縮小/教員も部活どころではない
Characterizations of one-basedness and modularity in rosy theoriesという論文を最近書きました:https://www.researchgate.net/publication/372588053_CHARACTERIZATIONS_OF_ONE-BASEDNESS_AND_MODULARITY_IN_ROSY_THEORIES
ikuo yoneda model theory で検索してみて下さい
米田郁生より知られているみたいです
写真はModel theory conference in Seoul 2010. Yonsei Univ., May, 2010での講演中のもの
公費出張で議員のような観光気分となり私的なテニス/ピースサイン/サムアップポーズ/食事風景のSNS掲載/イケオジと勘違いしてFacebookで異性の若い卒業生との写真・食事デート報告など致しません 公平性のため いかなるgenderの卒業生とも関りは一切持ちません
一人の数学者から数学に対する考え方を盗んでもらえればいい
モデル理論 ⊂ 数学基礎論 ⊂ 数理論理学(mathematical logic)を用いた各数学分野への包括的な応用
「数学者 論理学者」です
論理展開がない数学は公式暗記に頼った惨めな計算ブートキャンプ…脳みそが筋肉ん「パワーッ!」肉離れ注意
論理展開の基本はド・モルガンの法則と排中律です…古典論理と呼ばれます
ド・モルガンの法則と排中律を証明しようとする哲学者は憐れ…対偶も分からない・背理法も使えない
非古典論理を精密に研究する深遠な数理論理学の分野もあります
モデル理論 夏の学校2024 の副幹事を務めました:https://sites.google.com/view/modeltheorysummerworkshop2024/
修士2年でUniversity of Illinois Urbana-Champaignを研究訪問した際,大変お世話になった神戸大学桔梗宏孝教授ご還暦記念研究集会幹事を務めました:2023/3/6,7,8 福岡市あいれふ8F HP:https://sites.google.com/view/modeltheory2023spring-fukuoka/home
数学基礎論サマースクール2022の開催委員代表を務めました(参加登録者数182名)
https://sites.google.com/view/kisoronsummerschool2022/home
数学基礎論サマースクール2011も世話人代表をしています
http://www2.kobe-u.ac.jp/~kikyo/LogicSummerSchool2011/
数学基礎論は「数学の危機解決≒一般数学の基礎付け」を終え 代数学/幾何学/函数論/函数方程式論/実函数論/函数解析学/統計数学/応用数学/トポロジーと同列に発展中の数学分野です
数学者としての系譜:
現代数学の父・David Hilbert先生(1862-1943)⇒髙木貞治先生(1875-1960)⇒彌永昌吉先生(1906-2006)⇒佐武一郎先生(1927-2014)→米田郁生(1973-)
と恐れ多くも繋がっています!ここでA⇒Bは「AはBの大学院生時代の指導教官」 C→Dは「CはDの大学学部生時代の指導教官」を意味します
米田の補題(私はまだ理解出来ず)で有名な信夫先生(1930-1996)は数学的叔父にあたります
佐武一郎先生は「数学は海で 波打ち際でジャブジャブしているのが他の科学」と仰ってました 確かに現代数学は他の科学なしに先行して成立します
数学界の慣習:
数学は熾烈な国際競争で気楽な国内競争ではありません.gift authorはありえず共著より単著が圧倒的に高評価 学会/研究集会発表の責任者は口頭発表者でgift speakerもありえない ポスター発表は数学者として未認知者向け(大学院生レベル)
専門のモデル理論研究のほかに代数学からのモデル理論に必要な知識を得るためにJean-Pierre Serre先生(1926-)の著書で大学院生向けでない研究者向けの研究図書Galois cohomologyを半分まで読み,一方,ギャップがある複数の論文について海外の著者達に対し積極的に質問状を書き,著者達とメールの往復で議論しています ギャップだらけの論文を読むのはどこが正しくてどこかおかしいかの分別が必要で根気と体力勝負です 「数学は体力だ」とAndre' Weil先生(1906-1998)が仰ったように…
幾何的モデル理論(独立概念に関した幾何的性質による分類学 https://research.kosen-k.go.jp/file/4990 ),代数構造のモデル理論…特に体のモデル理論
※体(読み方は「たい」,英語ではfield,仏語ではcorps)とは四則演算+,-,×,÷で閉じた代数的構造
【リサーチマップには不適切なオーサーシップのdigital tattooがくっきり…学位授与機構の認証に通用するか?】
https://www.mext.go.jp/a_menu/jinzai/fusei/1360482.htm
国際的なResearchGateと違い国内限定リサーチマップは国内研究者の自己管理で記入されており虚偽記載も散見されます 論文タイトルをweb検索し論文のPDF fileやDOIを探せば正しい著者情報が得られます:web検索で見つからない論文は読まれる価値がない論文 ボスが書いた4人,6人の共著論文に対する受賞を共同業績でなく単独業績にしたり 共著論文で筆頭著者かつ最終著者や(そうならば単著になる)共著論文でメールアドレス未記載で研究連絡もつかないのに責任著者と偽っているケース 実際の論文を見たら他の著者が責任著者であったり Nature論文にメールアドレス未記載の共著者が共著論文を自ら執筆したと主張する場合もあります 共著論文で他の共著者名を列挙しないのは(戦況悪化後の大本営発表のような「もみ消し・隠蔽」の様)他の共著者に敬意を払わない行為で学術を諦めたにしても何故そのような学術界の作法に反する表記をしたかの説明責任はあります 学術界の作法に疎い人は反対意見を「うるさい!黙れ」と一喝します…学会で質疑応答した事ないのかな?共著論文を一緒に書いた方々の名前を列挙しないと次に一緒に快くは執筆できないでしょう 数学では著者順はアルファベット順ですが 共著論文は責任著者による著者順の決定でさえ揉める事もあるので共著者の名前を列挙しないなど到底考えられません 共著者を論文の順番通り列挙しないのは責任著者を愚弄する行為です 共著論文の著者として端役なのをもみ消したいででしょうか? 後進国での国際会議やマイナーな地方支部会の研究発表報告あるいは研究資料を論文1本と数えたり 同じ論文を英語タイトル/日本語タイトルで2本と扱うなど研究業績水増しもよくあります 論文のしょぼい出版元(例えば出身大学の出版物…他に受理先がなかった論文にみえる)の隠蔽もあります リサーチマップで講演・口頭発表等の虚偽申告が参加者名簿未記載で発覚する場合もあります 授業は研究発表の延長で英語での口頭発表経験がものをいいます
科研費報告書の英文アブストラクトで文法や構文が中学1年生より酷いものが多々あります 自分の研究内容が自分で分からないのでしょう
google翻訳でもあそこまで酷い英文にはならないはず リサーチマップに学歴未記載も重大問題
実際の論文に記載された著者情報/出版元情報とリサーチマップ情報の差異こそで研究者としての誠実さが如実に分かり リサーチマップの逆説的な利用法もあり得ます・・・何を盛りたかったのか・隠蔽したかったのか見苦しい自己都合が凄くよくわかる
純度の薄い偽薬(研究)で(給料)ぼろ儲け 密造人のような美味しい話 研究集会で最先端研究を発表しないと授業の腕は錆びまみれ
Simone Weil著(1909-1943)「根をもつこと」より:人間が永遠なる運命を有するという事実は,ただひとつの義務だけを要請する.すなわち敬意という義務を.この敬意が虚構ではなく現実において具体的に表明されてはじめて,義務はまっとうされる.
中庸と呼ばれるものは、現実には、相反する諸欲求のいずれをも満足させない.中庸とは真の均衡の戯画にすぎない.真の均衡のみが、相反する諸欲求をその十全性において充足させるのだ.
学位名詐称も【政治家の経歴詐称に匹敵】:理学博士>論文博士≑学術博士≠Doctor(PhD)=doctor in doctor of philosophy,
学術博士≠Ph.D(biology)=doctor of philosophy in biology
学術博士≠博士(生物学)
唯一の責任著者論文が研究資料で実際の責任著者までも違った …Doctor(doubt) 口頭研究発表経験もなし
doctor=医者,academic doctor=doctor of philosophy=Ph.D=博士
diplôme d'études supérieures spécialiséesは修士論文を書けなかった修士課程修了で修士号maîtriseの学位取得ではない
https://researchmap.jp/read0104627
数学教室主任就任1年目で全国高専数学到達度試験・全国3位以内を達成しました
今は到達度試験からComputer Based Testとなり受験時期・受験項目が各高専次第なので 高専間の比較は出来ません
記述式の試験と違い試験結果がすぐ分かり後期中間試験の前に正答率60%未満学生の留年防止対策が出来ます
学年と学科名は伏せますが定員40名のクラスで正答率60%未満はある学年では18名/9名/7名 別の学年では21名/10名/7名と分岐します
専門学科によって差が出るのは学科の危機意識の差です
定期試験の平均点数が高いと誇る正答率60%未満が18名および21名の学科は専攻科入試で数学をなくして欲しいという有様で
そうならば初めから その学科だけ数学の単位数を削減すればいいです
現にベクトル解析を履修せず 線形代数を同じ教科書で同じ内容を3年生と5年生で2回履修させています
どんなに優秀な頭脳でも使わなければ退化します
工学系数学教育の背景には純粋数学/現代数学の素養が必要で 髙木貞治先生の名著「解析概論」の読破は最低限必要です
数学科では様々な純粋数学分野の基礎を学びますが そこのどの部分だけが限定的に高専数学で使われているか肌で感じるのです
高専数学の微分積分・線形代数はmildでhappyな数学で教える側が数学に精通していれば学生にとって苦行ではありません
高専数学は難しいと言われますが例えば高校数学はどうでしょう?志望する大学・学部学科によって数学の難易度は違います
そう考えると高専からの大学編入試験の数学は簡単です 進度は早いですが内容は浅い・・・何故なら各専門学科に重心があるからです
各専門分野で生じる現象の数式による表現が分かればいいのです
工学の高専からエリート・アスリートたちの大学体育学部への編入学はありません
高専生の保護者の方々は体育系の進学を希望されているのでしょうか?
内輪の高専体育大会優勝の横断幕はあるのに本校の真価を対外アピールできる大学編入学の実績・求人倍率の横断幕がないのが不思議です
対外アピールより学内アピール優先の似非体育学校でしょうか?保護者のご要望と学内事情の乖離を懸念します
工学の分野に限って徳山高校普通科と互角に闘えればいいと思います 医学部志望がいる徳山高校理数科には勝てません
高専レベルの運動部で体力をつけ安価な労働力となってしまっては宝の持ち腐れ 保護者の方々に申し訳が立ちません
本校の低学年・年間数学単位数は2科目で3+3=6に対し 学力が格上の明石高専は4科目で2+1+1+2=6と落とす単位数を下げる授業設計は妙案です
中学数学はユークリッド幾何学が重要で高専数学は代数学と解析学の初歩のインスタント数学なので高専に入学してから頑張っても間に合います
数学科のような厳選された素材から出汁をとる「純粋」数学とは異なります
本校の学習潜在能力の平均は広島大学工学部レベル(工学部志望者が少ない大学理学部とは偏差値比較不能 工学部と理学部では入試で問う内容が違う)であり その全体的な学習意欲維持 学力が身につく喜び 保護者満足度を意識する
定期試験は簡単すぎず難しすぎず 難易度は毎年変化する学生の学力を鑑み 上の学年での学習意欲維持を第一義とする
経済失策続きで少子化が加速するなか 本校が生き残るために25~35番代の学生の底上げで クラス定員40名中 上位35名以上の単位取得を目指す
昨年度は38名単位取得
とはいえ 高専は高等教育機関ゆえ競争が原則です 競争について行けない学生は進路変更が早ければ早いほど幸せになります
…それが分からない また 研究の競争原理すらも知らない方がいるのも現実です
コネで身を立てたのか 勉学で身を立てたのか 「米田先生 たかが勉強ですよ」という目出度い方もいます
【平均点数が著しく下がる理学部向け数学問題を定期試験には出しません】
スマホや動画世代の学生はエレガントな解説しか受け付けないと考えています
定期試験の平均点数が著しく低い場合 無謀で過多な内容のシラバス・担当教員の研究能力脆弱性・研究成果が伴わない職位への欲望・愚者らしい自惚れの妄想から生じる(理工系の研究教育機関なのに)試験結果の統計分析をしない歪んだ「教育精神論」が原因かもしれません
100点の偏差値を計算すると試験の難易度が露骨で 平均点数が高い専門学科が優秀かどうかは100点の偏差値を見ないと分かりません
「うちの専門学科は平均点数が高かった」…実験の統計データ処理出来るのでしょうか?
各段階で未熟な学生の知性を刺激するのが教員の仕事で「勉強が足りない もっと勉強しろ!」と叱るのは知的水準が低い指導です
私は授業だけでなく研究集会発表のためにもプレゼン力が高い芸人のMC番組を日々参考にしています
平均点数が低く,標準偏差が大きい定期試験は破綻してます.
●いきなり学生を指名しての質問はしません:他の事を必死に考えているかもしれません
●学生に黒板で解答させません:先輩のノートを写しているだけかもしれないし 良くない解答が伝統となるから
●高校生の時 同級生の黒板での解答がエレガントでなく非常にイライラしました 出来る学生には不愉快な時間です
●学生個人の学力を公衆の面前で曝け出すのは見せしめの教育虐待に当たる・都会の大手予備校ではありえない
「テスト簡単ですか?」と高専生は聞きますが自らを貶める言動です
推薦狙いでない学力入試勝負の進学高校生ではありえない発言です
工学系以外の科目はJABEEによる一律60点合格ではなく 偏差値40以上を合格にした方が合理的と私は思います.
単位は己の学力で勝ち取るもの 「単位下さい」「単位ありがとうございました」は教員から自立していない恥ずかしい性根です
私は成績の優劣やgenderに依らず学生を自立した大人として扱います したがって成績評価は個人の実力が分かる試験のみです
レポートは他人のを写せます 私自身 自分のレポートを友達に見せていました テストで勝てるので
研究には成り立つか成り立たないかの答えがありますが 教育は飛行機のフライトが気象条件で左右されるように「受講者次第」なので答えがありません
答えのない教育に対する教育研究とか教育論文とか純粋数学研究者の私には理解不能です
教育報告書を論文と仕立て上げれば錬金術のように少なくとも毎年論文が書けます
genderと才能:様々な分野でgenderの多様性がある genderで才能は選べない 才能という生産性の高度化が尊重される社会になった それを踏まえた互いを想い遣う健全な恋愛は自身の無力さを知る貴重な機会 ソクラテスの「無知の知」が実体験できる If you love somebody, set them free...(Sting)
自由とは自分の道を自己責任で決定する事 他力本願寺ではいつまでも誰かに執着した苦しむ人生が続く genderに対する差別も固定観念に執着した制限された人生になる
Simone Weil 著「自由と社会的抑圧」より一文…「技術は方法的反省を恒常的に機能させる性質のものでなければならない」
Simone Weil著「重力と恩寵」より「技術は力と文明をおなじ陣営におくので 勝者と敗者の混淆による再活性を不可能にする 技術は呪われている」「必然と善の懸隔とは被造物と創造主との懸隔にほかならない(中略)悪の正当化の試みはことごとく,この真理に逆らう過誤である.それは在る,という理由だけを例外として」プラトン((-427)-(-347))「国家」より「人間は愛ゆえに善と必要(必然)を混同し,必然の本質と善の本質の相違に気づかない」
技術を愛している自分が信頼されている迷妄 技術は愛し信じる宗教か?自然科学の摂理は情念と無関係な理性の論理行使にあります.
論理学者なので安直な感情論・印象論は全く理解できません.
●進学高校理系のモテたエリートの素養ですが理工系に必要なのは愛ではなく理性 愛の対象は恋人やペットなど本質に先立つ実存するもの
●学生を理性に導くのは愛や情熱ではなく知性 工学の高等教育機関が馬力に劣る人間力育成では恥ずかしい 国際的競争力ある技術開発者育成
理工系の最先端研究では科学先進国との科学交流が意味を持つ.科学後進国との連携に人道的メリットはあるが科学的メリットはない.異文化交流は万国共通のacademicには不必要でプライベートの余興 異文化交流は文系の方が得意 文系との差別化が理工系には不可欠 国際研究集会は各分野の先駆者とアイデアをぶつけ合い議論する場 自分の発表が終わってからも勝負 自分の発表が終わったあと遊ぶのは最先端研究していない証拠
active learningの反対=passive learningのおぞましさに関連するSimone Weil著「根をもつこと」からの記述:「閉じられた環境で生成され,あまりに多くの欠陥があり,しかも真理にまったく意を払わない現代の文化から,まだそこにかろうじて残っていた純金を大衆化の操作によって拭いさったうえで,学びたいと願う哀れな人びとの記憶の中にひからびた残滓を親鳥がひな鳥に口移しで餌を与えるように押し込むことを意味する」…餌も自分で選ぶのがactive learning.図書館は餌場の一つ.日本語の数学書の場合,海外研究歴が長い日本人数学者の本が優れている.数学の洋書を読むには都内難関私立大学入試の英語力(英文法と長文読解力)と半年間くらいの「慣れ」が必要.
徳山高専は理工系のうちで理学ではなく「工学」の技術者/研究者を育成するNational Institute of Technology・国立工科研究所です 抽象的な理論を考えるより具体的な工作/実験/実習が好きな学生向けの「専門」研究所です。国語/社会/数学/理科/英語の5教科だけが得意な学生は学年が上がるごとに工学の専門学科の単位数が増える高専には全く向かないので普通進学高校に入学すべきでしょう 工学専門の高専と それ以外の選択肢もある普通進学高校と比較出来ません 例えば徳山高専の受験者と徳山高校の受験者は母集団として違うので偏差値比較できません 同様に全国の専門学科も様々な高専を各県の偏差値で比較するのは統計数学が分かっていない愚かな行為です 個性的な工学の専門学科の科目が好きでないのに漫然と高専生活を続けるのは苦痛かつ将来の展望が狭くなり学習意欲も減少します 自分の進路を決めるのは自分,Let your soul be your pilot (Sting)です 台風が海面温度が高い場所に導かれるように各自興味を一つに絞れるほど惹かれれば進路は自ずと決まり後は夢の実現への努力です
どうしても自分には高専が合わないと思ったら保護者/担任教員などと十分緊密に相談の上 普通進学高校に再入学するか通信制高校に早く進路変更 あるいは高等学校卒業程度認定試験に早く合格して大学や専門学校への進学など含め将来の可能性を幅広く切り開きましょう 工学の専門学科が主軸となる高専の勉強と大学受験の勉強を両立するのはほぼ不可能です また学力が不安定な時期である高専1,2年の数学と運動部の両立は難しいと覚悟して下さい 高校生の場合 高体連大会は3年生が主力ですが高専体育大会の場合 選手層の薄さ(徳山高専の一学年数は約120,徳山高校の一学年数は約280)から1,2年生の負担が非常に大きいのです 高専からのプロ・アスリート成功例はありません 研究遂行能力なき教員による学力より部活/人間力謳うベースモデルは教授への椅子取り獣道の犠牲となるのは学生の潜在学力
研究と科研費申請をしない教員の授業退廃→学生の学力低下→学生が部活動に活路を見出そうとする→私立高校のスポーツ推薦生には到底敵わない→進路に迷う+研究しない高専体育大会で勝った教員が教授に→留年者の増加+研究しない教員の権威こそ上がり学習しない雰囲気が学生にも蔓延
トリプルFD=Faculty Degeneration Faculty Destruction and Faculty Disintegrationを学位授与機構にどう説明するのか?
学業が主食,部活動はデザート,心技体の栄養バランスに気を付けましょう.高専生の売りは技術の技を支える頭脳です.
学生の高専への向き不向きも個性です.各学生の個性を保護者/高等教育機関である高専が連携して伸ばす方角を提示するのがacademic and career counselingです.
思考の練習である勉強はすればするほど進路の可能性が広がります。労働環境の良い将来性ある優良企業を就職先として狙いましょう.
企業に自分を選んでもらうのではなく自分が企業を選ぶ学力を身に付けるのです.
勉強は将来何か自分で解決しなければならない問題があったとき打開するために考え続けるクセとコツをつけるためにあります。
【高専から難関大学工学部への編入学は比較的簡単です:数学に関して,微分積分,微分方程式,線形代数さえ解ければ合格ラインです】
出題率が1割弱と低い,ベクトル解析,フーリエ・ラプラス変換,複素解析は解く必要ない
ところが入学後は高専生向け大学編入学試験より格段に難しい大学受験で鍛えられ精神的に自立した進学高校出身者との競争です。進学高校の生徒は難関大学入試問題を解けない高校教師をまともに相手にせず進学塾の先生を頼るのです.
TV九州のワールドビジネスサテライトの「トレンドたまご」のコーナーが好きな学生は高専に向くと思います。TV九州は将来性がある全国区の工学企業だけでなく九州山口近辺の工学企業を紹介する番組もあるので就職先を決める際の参考になればいいですね。エネルギーや鉱物資源供給網の地政学変化でlocalizationとglobalizationの時代は交互に訪れるのでlocal/globalに関わらない将来性ある工学企業への就職が学生の保護者の安心に繋がります。
理工系の中でも理学系に進学したい場合は,普通進学高校に入学し大学受験をすべきでしょう:高専数学と大学入試の数学は違います。高専数学が出来ても大学入試の数学は出来ませんし,大学入試の数学が出来たとしても高専3年生の数学は出来ません。高専数学と普通進学高校/大学工学部では数学の学ぶ内容が違うのです。高専数学は様々な公式を学び工学に必要な数式の理解が優先され,他方大学入試は数少ない公式を駆使して文章問題を解きます。
① 数学や物理は公式を暗記し数値を代入して喜ぶのではなく公式を綺麗に導く過程に関心+納得しながら覚えて喜ぶのです!
文学が心情や風景を美しい文体で表現するように,理工系の神髄は,抽象的な概念間におきる相互現象あるいは具体的な自然現象の数式による記述(description)です。公式や定理の証明を覚える事は良い事で,特に一番短かく要約された証明を覚える事はとても良い事です。長い証明は議論の本質をつかんでいません。複雑な数式を論理的な推論によって意味が分かり易い数式(標準形=canonical form)に変形する能力を鍛えるのが肝要です。
推論の基本「AならばB」の定義は「Aでない,あるいはBである」です。Aが成立しないときは「AならばB」が常に成立しています。
●矛盾した公理系ではすべての命題が真になります.司法/立法/行政の三権分立がないと何でもありになるのと似ています.自身の哲学が虚無の哲学商社マンが学会誌の査読論文は書けず,アニメのテーマを引用し無尽蔵に自己啓発サブカルチャー本が書けるのも同じの原理です.
「AかつBでない」から矛盾が出れば「AならばB」が成立する,のが背理法です。
●pが素数ならば√pは無理数である:
m,nが整数で√p=m/nとなれば「p×nの2乗=mの2乗」となり,左辺のpの指数は奇数,右辺のpの指数は偶数となり矛盾です。
●Russell's paradox:
Φ={x: xはxの元でない}とおく。Φを集合としたとき「ΦはΦの元である」と「ΦはΦの元でない」は同値になり矛盾です。
したがってΦは集合でありません。また空集合は元を持たない集合なのでΦの元です。
●Cantorの定理:集合XからXの部分集合の集合2^Xへの写像をfとするとき,Y={xはXの元:xはf(x)の元でない}とおくとf(x)=Yとなるxは存在しない:そんなxがあったとする.xがYの元である⇔xはf(x)の元である⇔xはYの元でない,よって矛盾.
●「公理系Tと命題Pが矛盾しない」ならば,TからPが証明される,は間違え.「TからPの否定は証明されない」とは同値です.教科書と矛盾しない事とは教科書からの帰結ではなく その否定が導かれない事の証明で無駄話です
② 高専数学の特殊性:高専数学≒大学工学部の数学(古典数学の応用)≠大学数学科の数学(現代数学の理論構築とその応用)
高専入学後,初めての定期試験前,中学数学に関する診断テストを受けるのですが,そのとき成績下位の学生でも高専数学を地道に頑張り,中上位になる学生は多いので,とかく難しいと思われがちな高専数学ですが,入学直後からの本人の危機意識・競争意識・努力・創意工夫次第です。中学数学の幾何で必要なのは,図形の相似,平行線の定義/公理,三角形の内角の和=180度,円周角の定理,三平方の定理くらいです。また計算には掛け算・割り算が足し算・引き算より優先されるルールがあります.a(b+c)=ab+acも長方形の図解で認識して下さい.
高専数学最初の鬼門は2次関数の標準形への変形および関数y=f(x)の平行移動y=f(x-p)+qで,高専数学で特に重要な3つの公式は高専2年で習う三角関数の加法定理,2項定理,n→∞のとき(1+1/n)のn乗→無理数であるネイピア数e(≒2.718281828459…)です。
進学高校同様,中学で成績上位だった学生が集まる徳山高専ですが入学後の学内で成績下位になって驚く事もあるでしょう。
私も福島県の中学では学年3番以内でした.都立高校入試では数学60点と大失敗し432点/500満点でした.数学で失敗した理由は綺麗な解き方を求め時間切れになったからです.進学した都立高校の初めのテストで8か9クラスあった中にてクラス19番になって頭が真っ白になって慌ててZ会に入り1年後には学年3番以内になりました.仮に下位になったとき,工学の各分野を専門とする学生である意識と共に,頑張って順位を上げて見返してやろうという悔しい気持ちが常に大切で強い競争意識が高度な学業を修める糧となります。徳山高専の各学科1学年の定員は40人ですので,たった40人前後の戦いです.従って学力が高い40名になるかどうかは学生達の向学心次第です.他方,進学高校生は予備校などの全国規模の模試による偏差値で全国での自分の位置を確認します。40人前後では統計学的にとても小さな母集団ですので成績順位の入れ替わりは簡単です。
大学受験と違い試験範囲が狭い定期試験の瞬間値で一喜一憂しないで下さい。定期試験の点数より定期試験に出ないような難しい問題に挑戦する事が真の勉強です.特に大学編入を目指す学生は基本問題を解かず応用問題だけを解くべきです.私が高校生の時,数学の提出課題で,問題集ステップ1の問題が簡単すぎて,未提出のままにしたら校内放送で呼び出されました.課題の対象ではないステップ3の問題だけ解いたノートを提出すると担当の数学教員は舌打ちをしました.簡単に解けない問題への挑戦が思考能力+向学心を高めます.
高専は主たる専門学科があるため大学受験と違い試験科目が多いのは大変ですが頭を使っただけ社会に飛び立つ揚力が与えられます。馬力と違い単位で数値化できず定義も曖昧な人間力より,試験などで数値化でき具体的な知力をつけるのが高等教育です。進学高校では文系か理系かを決める時間の猶予がありますが,高専の場合,工学に限定された各専門学科に特化した教育が入学直後から始まります。
高専の良さは早くから工学の専門分野を学ぶ事にあり,その目的に耐えうるよう高専数学は高校の文系/理系数学より工学に特殊化されています。工学では積分(微分の逆変換)によって定義される測量(面積,曲線の長さ,体積,曲面積,流出量,確率・統計の判定など)が重要ですので,高専では2年生で微分積分を習い始め高校では3年生で習うので高専数学は難しいと言われる側面はあります。
他方,解析的整数論の英国数学者Godfrey Harold Hardy先生(1877-1947)の言葉に「整数論を1か月うまく教えると“技術者のための微分積分学“を1か月教えたのよりは2倍も教育的で2倍も役に立ち,10倍も面白い」とあります。
初等整数論は数学オリンピック/難関大学入試の数学によく見られるように,高専数学と数学オリンピック/難関大学入試数学は比較できない,つまり同じ数学でも学ぶ目標が違う事を認識して頂きたいのです。大学数学科のように数学のために数学を勉強しているのではなく,工学の専門学科を分かるために高専数学を勉強しているのだ,という意識を持ってください。
高専数学は満16歳から学ぶ工学の専門学科で必要な数式を理解するために設計されており,満19歳から専門教科を学ぶ学生向けの数学検定/大学受験数学とは比較できません。大学工学部でも習わない積分公式を高専2年で学び!高専5年は卒業研究/大学3年への編入学試験/専攻科入試もあるため高専4年(満19歳)までに大学工学部2年(満20歳)までに習う工学数学すべてを習得します。
【高専生は大学工学部生より工学数学の学習期間が1年圧縮されています。高専数学で辛いのは3年生までなので頑張ってください!!!】
「高専生だから数学は得意 」とは必ずしも言えません。David Hilbert先生達に始まった抽象的な概念を考察対象とする現代数学を学ぶ数学科の学生から見れば高専数学は具体的な自然現象を対象とする工学向けの古典数学だけでしょ!となります。
大学の数学科は概念同士の関連を明確にする「証明」が好きでなければ務まりません。数学の証明が好きで工学のものづくりが苦手な学生は高専には向きません。高専生は数学よりも工学の各専門分野の知識が最大の売りなのです。定義が曖昧な人間力を求める企業は採用基準も曖昧で将来図が描けていない非優良企業です。上司の言う事に対し盲目的に従わせたい企業に未来はありません。教員の言いなりになる学生は優秀ではありません。自分なりの考えがある学生こそ社会的価値があります。工学の専門知識を正当に評価する優良企業に就職し自分の実現したい事を明確にし人生を豊かにして下さい.技術者には未来に求められているものに対する嗅覚が不可欠でTV九州放送のワールドビジネスサテライトは未来志向の技術者の羅針盤となるでしょう:localな企業にもglobalな企業でも生き残る術を伝える番組で与野党の勉強不足による不毛な議論をニュースにはしません.Think globally act locallyという格言があります.
③ 数学の学習は自分で分からなくなった箇所を早く自分で知ることが大切です。
なぜ自分がそこで分からなくなったか自己分析すれば既に解決の一歩を踏み出しています。分かっていない自分と自分で向き合う客観力を養いましょう。自分の分からなくなった所が分かるのは本人にしか分かりません。自分で分かっている事と分かっていない事をきちんと区別し,分かっていない事を鵜呑みにして先に進むと分かっていなかった事が「ある時」「突然」「幸運にも」閃いて分かる時もあります。あらゆる角度から粘り強く一人で考え続ける事は最も貴重な経験です。 数学の教科書で分からなくなった所を自分で探して「遠慮せずに早く」質問に来てください。e-mailで予約してもらうとお互い助かります。分からない事を放置すると雪だるま式に分からない事だらけになって何が分からないのか分からなくなります。研究室ではなく質問者の教室に一緒に行って黒板で解説します。教室にいる他の学生にも分かってもらうチャンスを作るためです。大抵分からなくなる箇所は,皆ほとんど共通しており,教える側の改善につながる事もあります。先生に質問したくない場合は図書館に行って自分に合う本を探しましょう。ただし世の中には悪い本もあるので注意です。
④ 学問に王道・成就はありません。
他人に教えてもらった事は忘れ易く,自力で解決した事は忘れにくいです。分からない一か所を3か月以上考え続け解決した際は自分にも少しは力がついたかな?と思えるものです。技術者として未知の問題解決しなければならない場面で,どのように突破するかは幼鳥の巣立ちと同じで自分の翼で羽ばたかなければなりません。餌をもらうペットではなく餌を自ら探す野生動物のような自学自習が基本です。
私の経験で言えば独学が一番の早道でした:高校の授業は聞かずZ会/代ゼミ/大学への数学シリーズ・大学への上級問題集(研文書院…数学科志望のため「大学への数学シリーズ」で基本を勉強しました)で自習し千葉大学理学部数学科(偏差値≒64)と中央大学理工学部数学科(偏差値≒62)に現役合格し実家から通える中央大学を選び大学の授業で扱った教科書が自分の実力と合わない場合は大学図書館で自分が分かっていない所を丁寧に解説してある数学書を探し自習しました。
岩波書店の解析概論(高木貞治著)集合・位相入門/代数系入門(松坂和夫著)を読破して数学科の学生としての本当に初歩の基礎固めをし裳華房の数学選書を読み漁りました。岩澤健吉先生の代数函数論を第3章の最後まで読んで代数学からモデル理論の代数への応用の一つである「微分閉体のモデル理論」に転向,体のモデル理論で必要な代数幾何学の知識は宮西正宜先生の裳華房・数学選書の「代数幾何学」を読破し修士論文はEhud Hrushovski先生のunpublishedの論文:ODE's of order 1 and a generalization of a theorem of Jouanolouの解説論文を執筆した直後にIllinois大学Urbana Champaign校を2か月ほど研究訪問し修士論文をAnand Pillay先生に読んで頂きました。修士1年のとき1か月で読んだIntroduction to stability theoryの著者Anand Pillay先生のLecture notes on strongly minimal sets (and fields) with a generic automorphismの講義を生で聴けたのは感動的でした。Anand Pillay先生に会ってGeometric stability theoryの学習が不可欠な事に気づき,その勉強をする過程で博士論文のテーマを選ぶのに困りAnand Pillay先生にe-mailで相談した際も私が微分閉体の研究をしていた事を覚えて下さいました!Anand Pillay先生から紹介された幾つかのopen problemsのうちの一つ「Herwig's generic structureのCM-triviality証明問題」に取り組みgeneric structuresが統一的に持つ性質``閉集合上の同質性''を持つ関係構造ならば常にCM自明性を持つ事の証明に成功し博士論文を執筆し2005年の日本数学会年会,数学基礎論および歴史分科会の特別講演に招待され報告致しました.
⑤ 再試験の勉強が正しくできるよう答案返却時に模範解答を配りますので先輩の間違えた答案コピーを参考に勉強しないでください。
先輩の間違った答案を覚えて来て定期試験の部分点をねだる学生がいます。点数をねだれない入試/資格/検定試験は精神の自立を促します。かつて0/0=1というガラパゴスな伝承がありました。2年生最初に習う三角関数の加法定理を忘れてのsin(α+β)=sin α+sin βという間違え,2年後期に習う二項定理を忘れての「(a+b)のn乗=aのn乗+bのn乗」という間違え,また「√(a+b)=√a+√b」という間違えが習ってから時間が経てば経つ程増えてきます。微分積分で活躍する様々な関数を急激に学ぶため,1年で習うlog(xy)=log x + log yと混濁するのかも知れません。
⑥ 休学/留年について
National Institute of Technologyは工学の高等教育機関であるので学籍がある留年がありますが,進学高校を3年で卒業して大学受験に失敗すれば浪人生となり無学籍となります。高校/高専受験と違いGMARCH(学習院/明治/青学/立教/中央/法政)以上の難関大学受験は浪人生との戦いで例えば現役生が多く受ける模試で偏差値65をとっても母集団の違いから浪人生が多く受ける模試では45くらいに落ちます。高2のとき高校での実力テストで英語の平均点が25点で75点をとって余裕のトップでしたが,高2の3月,代ゼミの英語長文読解講座の問題が中堅私立大学文系学科の入試問題にもかかわらず解けなくて「まずい」と思い代ゼミに通う事に決めました.大学受験参考書に出てくる単語と大学入試本番の単語が全く違うのです.また関係代名詞やカンマが沢山出てくる英文の長文読解が出来ないと英語の論文は読めません.その高2のときの実力テストは英語,数学,物理の3教科で英語と物理だけ受け学年2番でした.
高校入試の偏差値―大学入試偏差値≒+15です.中学まで福島県に住んでいて中3のとき高校模試の数学で県内唯一人の100点をとった事があります.トップを取れた理由はまだ習っていない円に関する問題が出題されたからで,円は1点からの等距離の図形である事を認識していたから簡単に解けました.同じ問題を東京都で受けさせたら1000人はざらに100点をとるでしょう.東京都の偏差値と地方の偏差値は単純比較できません.都立高校の模擬試験で社会で偏差値89を取った事もありました.私の福島県での高校入試模試の偏差値は78だったので(東京都の高校偏差値だと70以上あるかどうか分かりません)大学入試偏差値が70代の東大には行けません.徳山高専の入試偏差値は68なので大学入試偏差値だと偏差値53くらいで広島大学工学部とほぼ同じです.偏差値40代の大学工学部生より遥かに優秀なので就職率もいいのです.高専/進学高校は高度な学業を修める場であり未知の未来に向けて自分の頭で考える訓練をするのです。「大学受験勉強法の良くない方法=同じ問題を繰り返し解いて公式を暗記し解答のスピードを条件反射的に上げる学習法」よりも,独創性を育む「簡単には解けそうにない問題に時間をかけてじっくり考える,公式の暗記に頼らない学習法」を身につけられる可能性が独創性が重んじられる技術の世界に繋げる高専にはあるのです。公式の生い立ちを覚えれば,公式は自然に導くことが出来ます。公式を覚えるのは電車の駅名を覚える事に似て,公式の生い立ちを覚える事は,電車の車窓からの山河の風景を覚える事に似ています。風光明媚でトキメク風景が忘れ難いように公式も忘れにくくなります。公式そのものだけ暗記すると,定期試験後すぐ忘れます。
実は中学2年からBill Bruford, Stewart Copeland, Manu Katche'などのドラマーに憧れてドラムを始め,高校2年から大学2年までプロのドラマーを目指して日本屈指のドラマー坂田稔先生に師事しドラムの練習ばかりしたので大学受験勉強一本に絞ったのも高3の10月からで,また大学は2年間留年しました。二足のわらじは互いにレベルが低ければ可能で文武両道などは甘い夢で「職業としての夢」は一つに絞った時達成の可能性が芽生えるのです。大学3年から5年までは完全な独学状態で誰にも質問せずに数学だけと向き合った貴重な時間でした。坂田稔先生の練習姿勢を見た経験は数学研究の際に役立っています。
数学に話を戻すと1本の論文を読むのに4,5本の論文を読まなければ進めない場合もあります。20世紀数学者の巨星Andre’ Weil先生(1906-1998)の言葉に「アイデアはそれを受け入れる準備が出来ている人に与えられる」とあり,研究結果の背景をよく知る事も研究の遠回りのように見えて近道な場合もあります。
休学/留年は自分のスピードで一歩一歩正確に理解する地道で正直な技術者になるチャンスで急がば回れです。ウサギとカメの競争話のように高専卒業後に芽が出るかも知れません。すぐ分からない事は恥ではなく,己を偽って分かったつもりになり勤勉さを失う方が恥ずかしいのです。
真理を追究するソクラテスは知ったかぶりのsophist=詭弁家を敬遠します。
researchmapで共著論文を単独業績にみせかける他の共著者に敬意を全く払わない(何と指導教官に対しても!)パラサイト研究者はハッタリに都合がいい「実験データ改ざん・ずさんな統計解析」を厭わず,いずれ社会的損失を与え,頼みの指導教官が退官すれば,新たなパラサイト先を探すだけです.
その場限りのハッタリでなく真理を追究する誇り高き唯一無二の技術者・探究者になって下さい!
【日々の研究(難解な論文・研究図書の解読)こそ授業方法改善の道程】
数学者なので毎日,英語/フランス語の論文・研究図書を読みますが数学研究は書いてある数式を頼りに省略された数式(数式を文学的に表現するフランス人数学者の著作に多い)を後から読んですぐ分かるよう全て数式化してノートなどに記録しておく事が大切です。研究図書や論文にも誤植や間違っている事もあり,それを自分で修正する事も大切な作業です。数学の勉強は一度理解したら忘れてしまって結構ですが将来必要になった時,自ら素早くreinstall出来るようにノートをとって大切に保管するのです。
論文・研究図書を批判的に読んで書いてあるそのままの議論より深く本質を簡潔に黒板で表現する大切さを大学院でのセミナー指導教官・坪井明人先生に厳しく指導して頂きました。難解な論文・研究図書を解読することは現在と将来読み返した時の自分に対して分かるようにする作業なので,研究をすればするほど鳥瞰でき,解説が簡潔になります。
私にとって授業とは,論文・研究図書の解読の延長であり,教科書より簡潔な解説への毎回新たな挑戦で毎回必ず改善点がどこか閃きます。授業時間短縮のため,教科書に詳説されていない箇所はコンパクトに解説したプリントを配布します。チョークを3色使うので3色ボールペンを用意して下さい。議論の何処と何処が関連するか色分けで解説します。
「数学は出てくる各文字のbusinessに注目しなさい」と修士時代Illinois大学Urbana Champaign校を研究訪問した際Anand Pillay 先生に教えて頂きました。
数学研究とは無知との格闘です。ソクラテスの「無知の知」のように研究すれば研究するほど,知らない事を知るようになり虚栄心と疎遠になります。
研究しなければ何が既知で何が未知であるかの区別すら出来ません。
数学の発見は頭の中で浮かんだ数学的新しいアイデアの論理による数式化です。数学者は毎日分からない事との格闘です。
分からない事をいつも抱えているので,学生に対し知ったかぶるハッタリで気持ちを偽れません。
大学学部生時代の恩師である世界的数学者・佐武一郎先生(1927-2014)は「数学で分かっていることは有限で分からないことは無限にある,その無限にある分からない問題に立ち向かえなさい」と仰いました。一人の数学者が発見できることは人生が有限なので有限で過去から現在までの数学者の数も有限なので知られている数学の真理の個数は有限×有限で有限です。
人生は有限ですが数学の新発見は発見者の有限な人生から独立して永遠です。
これまでの人類に未知だった事を自分一人で閃き,新発見した「ときめき」は忘れようありません。
また,学問は頑張れば頑張るほど国内/海外の素晴らしき優れた研究者との出会いに導きられます。岩澤健吉先生(1917-1998)は佐武一郎先生が学部3年生の時に「一人の偉い数学者についてその論文や本を全部読むようにすることです」と助言されたそうです。私の場合全部読むことは全くできていないですが研究の羅針盤はAnand Pillay先生とEhud Hrushovski先生です。
偉大な数学者との大切な縁:
私の学位論文のタイトル「CM-triviality and Hrushovski's generic construction」に出てくるモデル理論の代数幾何への応用で高名なEhud Hrushovski先生は1998年のMathematical Sciences Research Instituteにおける研究集会の宿拍先として来日中だった佐武一郎先生のBerkeleyにあるご自宅を借りていました。2005年の日本数学会年会で特別講演をした旨を佐武一郎先生に報告したところお食事にお誘いいただき「Ehud Hrushovskiは私の家に泊まった一番立派な数学者」と仰っていました。私がモデル理論を始めて間もないころ,佐武一郎先生は「この代数の問題はモデル理論で解けないの?」とも仰いました。
佐武一郎先生が国際数学者会議ICM 1990 KyotoのProceedingsの代表editorをされていたときのICMでEhud Hrushovski先生は講演されています。中央大学での佐武一郎先生との出会い,筑波大学大学院時代の本橋信義先生/坪井明人先生/桔梗宏孝先生ご夫妻のご尽力によるAnand Pillay先生/John Theodore Baldwin先生との出会い,東海大学理学部数学科の非常勤講師時代Logic Colloquium2007での講演機会を板井昌典先生が設けて下さった事,様々な先生との縁を頂いた事は,数学者として研究する際の励みとなっています。
平成 9年 3月 | 中央大学理工学部数学科 卒業 セミナー指導教官 佐武一郎先生 |
平成 9年 4月 | 筑波大学大学院博士課程数学研究科 入学 指導教官 本橋信義先生 坪井明人先生 |
平成15年11月 | 筑波大学大学院博士課程数学研究科 修了 博士(数学)博甲第3285号 |
平成15年12月 | 筑波大学博士特別研究員(平成16年11月まで) |
平成16年 4月 | 東海大学理学部数学科所属 非常勤講師(平成21年3月まで) |
平成19年 4月 | 千葉工業大学教育センター所属 非常勤講師(平成21年3月まで) |
平成20年 9月 | 拓殖大学大学院工学研究科所属 非常勤講師(平成21年3月まで) |
平成21年 4月 | 徳山工業高等専門学校一般科目 准教授(現在に至る) |
平成17年 3月 | 日本数学会年会,数学基礎論および歴史分科会・特別講演「Generic構造の幾何的性質について」 |
平成23年 8月 | 日本数学会 数学基礎論および歴史分科会 数学基礎論サマースクール2011 幹事 |
平成23年 | 新 基礎数学 大日本図書 2011年10月発行 高専・大学等数学教科書 校閲 |
平成24年 | 新 線形代数 大日本図書 2012年11月発行 高専・大学等数学教科書 校閲 |
令和 2年 3月 | 新基礎数学 改訂版 大日本図書 2020年11月発行 高専・大学等数学教科書 校閲 |
令和 3年 3月 | 新線形代数 改訂版 大日本図書 2021年発行予定 高専・大学等数学教科書 校閲 |
令和 4年 9月 | 日本数学会 数学基礎論および歴史分科会 数学基礎論サマースクール2022 開催委員代表 |
該当なし | |
該当なし | |
該当なし | |
該当なし | |
該当なし | |
該当なし | |
該当なし | |
該当なし | |
唯一の共著論文で共著したカザフスタンのモデル理論研究者Viktor Verbovskiy氏とはIllinois大学Chicago校のJohn Theodore Baldwin先生にe-mailで紹介して頂き,二人でe-mailを通じた議論だけで論文執筆に至りました。Viktor Verbovskiy氏とは未だに会ったことがありません。
また,Logic Colloquium 2007で出会ったKobi Peterzil先生との議論でo-minimal 構造でのCohen Macaulay-trivialityとCollapse of Families of functions-propertyに関する或る結果のヒントを得てSome remarks on CM-trivialityという単著論文を執筆しByunghan Kim先生著の研究図書Oxford Logic Guides 53, SIMPLICITY THEORYに引用されました。
大日本図書出版の高専数学教科書校閲を「基礎数学」2回「線形代数」2回と合計4回担当しています.
改善点を幾つか指摘し採用されたものもあるのですが紙面の制約上採用されなかったものもあり,そういった箇所は授業時間短縮のため授業中にプリントを配って補習しています.この「技術相談内容」の最後に作ったプリントのリストを挙げてあるのでPDF fileである場合はメールで差し上げます.
情報系大学院修士1年生の数理論理学,理学部数学系の代数学,工学部数学全般,工学部1年生対象の高校数学総合復習科目の講義経験があります.
大学理学部数学科への編入学希望者に数学研究のおぞましい厳しさを具体的に伝えることが出来ます...どの分野も同じことだと思いますが読んで役に立つ入門書と今後何を勉強すべきか教示していない読むべきでない入門書があります.Emil Artin(1898-1962)は超有名な数学者ですがその立派なご子息Micheal Artinの書いたAlgebraは色々な事が「浅く」書かれていて読後の展望があまりなくお勧め出来ない本です.裳華房・数学選書 森田康夫先生著の「代数概論」は実に素晴らしい本です.Serge LangのGraduate Texts in Mathematics 211 Algebra (Springer)もいい本ですが分厚く辞書として使うにはいいでしょう.モデル理論の本で読まない方がいい著者の本を真剣に読んで失敗した苦い経験もあるので,そのような本は学生に勧めません.大学の数学書で何を読めばよいか迷っている場合は徳山高専で唯一の数学者である私に聞いて下さい.
数学者になるには博士を取得し,さらにポスドクや非常勤講師を務めながら業績(特別招待講演や大規模の国際学会での口頭発表者)を重ねる必要があり,論文のcorresponding authorにならなければなりません.主要でないcoauthor=共著者だけの業績,口頭発表の機会が与えられなかったポスター発表だけでは無理です:先行結果でなくても発表できる場末の地方支部会や,後進国での国際学会に逃げ隠れて非先行結果を発表するのではなく,正々堂々と「先行結果しか発表できない,最先端の結果を知る研究者が集う」メジャーな国際学会での口頭発表代表者経験や,日本数学会の場合でしたら春の年会か秋季総合分科会で発表しないと意味がありません.Model Theory Conference in Seoul 2010での自分の発表のときEhud Hrushovski先生が聞いているのが見えた瞬間,鳥肌が立ちました.数学の世界は一番初めに発見し証明する事が大事で,次に,より簡単な別証明を与えることが求められます.
中学3年生とその保護者対象に高専数学の基礎/簡単な応用を特色にした1時間弱の講義経験もあります。
詳しくは ↓ をご覧ください
https://nit-tokuyama.jp/seeds/data/2023/yoneda.pdf
高専生や進学高校生の大学理学部数学科入学希望者を想定し,高木貞治先生の名著「解析概論」をより詳説した微分積分の土台となるDedekind cutsによる実数の連続性から導かれる3つの同値な条件,実数でのCauchy列の収束,大学数学科の授業でも触れられることが少なくなったε-δ論法を用いた閉区間上の連続関数の基本定理(中間値の定理,最大値・最小値の定理,一様連続性の定理)の英語ノート(pdf file)を作成しました。
また高専数学の教科書でも解説が省かれているところをコンパクトに詳説した日本語ノート(ほとんどがPDF file)を以下のような項目で作成しました。
興味のある方はメールでご連絡ください。返信メールにPDF file添付して差し上げます。PDF fileでない場合は返信用封筒に切手を貼って次の住所に郵送連絡連絡下さい:〒745-8585 山口県周南市学園台 徳山高専 一般科目 准教授 米田郁生
個人情報の観点からメールでの住所のやり取りは控えたいと思います.
●基礎数学:簡単な作図による加法定理(三角関数)の図解/ Heronの公式証明 / 楕円方程式・双曲線方程式の2焦点について / 数学的帰納法の証明 / 数学的帰納法による2項定理の証明
●微分積分学:ネイピア数e<3の証明 / ロピタルの定理証明 / 不定積分と面積関数の関係 / 回転体の表面積の積分公式証明/高専数学に出てくる積分公式の証明 / マクローリンの定理証明 / 級数・べき級数の収束判定について
●微分方程式:Wronski行列式と2階常微分方程式の解き方 / オイラー・コーシー微分方程式の解き方
●偏微分:偏微分に関する基本的性質 / Greenの定理証明
●線形代数: ベクトルの内積と外積ベクトルについて / 基本行列と行基本変形・行列の積と行列式について(|AB|=|A||B|の証明)